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Gene Expression in the Cell Cycle of Human T
Lymphocytes: I. Predicted Gene and Protein Networks
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Abstract The key genes involved in the cell cycle of human T lymphocytes were identified by iterative searches of
gene-related databases, as derived also from DNA microarray experimentation, revealing and predicting interactions
between those genes, assigning scores to each of the genes according to numbers of interaction for each geneweighted by
significance of each interaction, and finally applying several types of clustering algorithms to genes basing on the assigned
scores. All clustering algorithms applied, both hierarchical and K-means, invariably selected the same six ‘‘leader’’ genes
involved in controlling the cell cycle of human T lymphocytes. Relations of the six genes to experimental data describing
switching between stages of cell cycle of human T lymphocytes are discussed. J. Cell. Biochem. 97: 1137–1150, 2006.
� 2005 Wiley-Liss, Inc.
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Resting T lymphocytes stimulated to prolif-
erate by phytohemagglutinin (PHA) represents
an excellent model system for the cell cycle,
studied at the chromatin level since long time in
normal and transformed human cells by laser
flow microfluorimetry [Abraham et al., 1980;
Vonderheid et al., 1981]. Structural changes in
chromatin independently suggested also from
different sensitivity of quiescent versus cycling
human T lymphocytes chromatin to acid dena-
turation [Darzynkiewicz et al., 1979] has been
recently confirmed by the exhibition of the
different spatial organization of genes in the

nucleus [Brown et al., 1999]. The difference
between cycling versus resting T cells has been
recently also shown by effect of the beta-
interferon, present in cycling T cells but not in
resting T cells [Cooper et al., 2004]. Moreover
expression of particular genes was shown to be
cell cycle dependent, e.g., the link between ATR
and p53 genes was present in cycling normal
lymphocytes but absent in resting and malig-
nant lymphocytes [Jones et al., 2004a,b] and
similar effect was observed for DNA topoisome-
rase I [Bruno et al., 1992], ADP-ribosyl trans-
ferase [Scovassi et al., 1987], and nuclear
antigen p105 [Clevenger et al., 1987].

The key question in cell biology is the effect on
changes in the overall state of the cell such as
the phase of the cell cycle on gene expression
and its regulation. In this study, we perform
such a search to identify interacting genes
involved in humanT cell lymphocyte activation.
Human T lymphocytes constitute an ad hoc
model due to the fact that their progression
through the cell cycle is easily initiated by
activation [Oosterwegel et al., 1999; Cantrell,
2002; Isakov and Altman, 2002] and, in parti-
cular, was quantitatively characterized time
ago [Abraham et al., 1980]. Experimental
investigations in this area used genome-wide
measurements of gene expression levels with
DNA microarrays from which it is possible to
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infer data on interactions between the genes
and the resulting proteins [Butte, 2002]. Tomap
such interactions directly from microarray
experiments, researchers involved in the area
compose sophisticated software [Jones et al.,
2004a,b; Troyanskaya, 2005]. This resulted in
accumulation of immense amount of data on
gene and protein interaction (about 800,000
interacting gene and protein pairs are currently
known). While database build-up continues,
examples of focused searches of the already
existing databases with statistics-based predic-
tions of interactions aiming to reveal genes
specific and important to the particular physio-
logically significant process are rare.

Cluster analysis is a common tool in inter-
preting the experimental microarray data
[Reimers, 2005] but also was successfully used
in mass scale text and data mining, for example
to select disease gene candidates [Tiffin et al.,
2005]. In the latter study, clustering was app-
lied to pairs of interacting geneswhilewe assign
interaction-based scores to individual genes,
and cluster genes according to those scores.

With this manuscript we use cluster analysis
to determine the most important genes that we
term ‘‘leader genes’’ andwe approach the task to
compile and updatemaps of themajor biological
control systems, in order to integrate them in a
concise manner, to discern common patterns of
interactions between gene expression and their
correlated coding of proteins during cell cycle
progression.

METHODS

Several existing and representative experi-
mented databases (see Table I) are accessed via
the search engine Entrez [www.ncbi.nlm.nih.
gov/gquery/gquery/fcgi] in order to:

1. identify the genes involved in humanT cells
cell cycle,

2. predict possible interactions between the
genes of Item 1,

3. identify the possible leader genes i.e. those
having the maximum number of interac-
tions.

Genes Involved in Human T Cells Cell Cycle

Several search strategies were implemented
and iteratively repeated until the newly identi-
fied genes were already found in the previous
search. These strategies included:

a) direct Genebank search with pertinent
keywords (resulted in 43 genes),

b) branching of the results (a) with respect
to all Internet-available genome databases
with immediate cross-checking via the
database PubMed (47),

c) scanning of the gene lists dedicated to
lymphocyte activation and general cell cycle
from commercially available DNA micro-
arrays [www.superarray.com] with respect
to pertinence to cell cycle for the ‘‘lympho-
cyte activation’’ SuperArrayTM microarray
(84 more genes) and to lymphocyte activa-
tion for the ‘‘cell cycle’’ microarray (18),

d) branching of the search results from items
(a–c) via the Gene Ontology database (46,
totaling 254).

Particular attention should be paid to Item (c)
from which it follows that not all the genes
present in the dedicated microarrays are in fact
related to the function specified by their manu-
facturers. For example, thosemicroarrays often
contain ribosomal proteins, which definitely
belong to the catalytic machinery of gene
expression, and thereby are involved in any
biological process so their inclusion in the ‘‘cell
cycle’’ microarray as ‘‘lymphocyte activation’’
microarray seems questionable.

Item (c) emerged because the experimental
observations pertain to lymphocyte activation
[Abraham et al., 1980; Oosterwegel et al., 1999;
Cantrell, 2002; Isakov and Altman, 2002]. The
adopted procedure as quoted in (c) implies that,

TABLE I. Databases Used for the Identification of Genes Involved in Human T Lymphocytes
Cell Cycle and Their Leaders

Gene Genes from GeneBank and associated information for a number of organisms including human.
HomoloGene Contains homologs among the annotated genes of several completely sequenced eukaryotic

genomes
MeSH National Library of Medicine vocabulary of terms used for indexing articles in PubMed.
Nucleotide sequence database A collection of nucleotide sequences from several sources, including GenBank, RefSeq, and PDB.
Protein sequence database A collection of protein sequence entries compiled from a variety of sources including Swiss-Prot,

PIR, PRF, PDB, and translations from annotated coding regions in GenBank and RefSeq.
PubMed Access to all citations from MEDLINE database and additional life sciences journals.
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although it is well established that the process
of lymphocyte activation is closely linked to the
lymphocyte cell cycle, not all genes involved in
lymphocyte activation are directly involved in
the lymphocyte cell cycle. Obvious examples are
genes responsible for early stages of immune
response, which have no direct relation to the
lymphocyte cell cycle but are directly involved
in lymphocyte activation. Note that the nomen-
clature used follows that currently adopted
in GeneBank. For example the known gene
FASLG is presented as TNFSF6, but the gene
FAS listed in this report has a synonym of
TNFRSF6.

Prediction of Possible Interactions

Theweightednumber of links is calculated for
each gene using the program STRING [von
Mering et al., 2005]. This value derives from the
weighed sum of three types of interactions.

(1) co-occurrence of the names of gene or
respective proteins in abstracts of papers
available via Internet. The scores assigned
are derived from benchmarked scoring
system based on the frequencies and dis-
tributions of gene names in abstracts. The
benchmarks themselves are set fromman-
ual evaluation of predictions of gene and
protein interactions by experts [Donaldson
et al., 2003], and are typically below 0.5.

(2) Scores derived from databases of gene
networks, e.g., KEGG [Kanehisa et al.,
2004] containing data on induction of a
particular genes by other genes derived
frommicroarray experiments or other high
throughput techniques. The score of 1 is
assigned if the link is already present in
the database while putative links have
lower values (typically 0.6–0.8).

(3) The same range of scores is assigned to
gene interactions via physically observed
interactions between proteins. The soft-
ware used does not discriminate between
in vivo or in vitro experiment derived data.
Generally the scores are close to those of
interaction type 2, but links of this type
occurmuch rarely than of type 2 (see later).

Finally, the combined interaction scores Sij

for the gene pair (i,j) are integrated according to
the formula:

Sij ¼ 1�Pkð1� SijkÞ

where Sijk is the interaction score of the pair (i,j)
of the type k. In this case k¼ 1 . . . 3 according to
the above list of score definitions.

Identification of Leader Genes

The combined association scores Sij were
summed for each gene i over its neighbors (i,j)
giving the finalweighted number of links for the
gene i. Further, we applied clustering methods
to the weighted number of links in order to
identify the group of leader genes.

Cluster analysis [Datta andDatta, 2003; Tsai
et al., 2005], also called segmentation analysis
or taxonomy analysis, is a way to partition a set
of objects into homogeneous and separated
groups, or clusters, in such a way that the
profiles of objects in the same cluster are very
similar and the profiles of objects in different
clusters are quite distinct. In particular, cluster
analysis can be defined as follows:

Cluster analysis: Given a set S of n objects {x1,
x2, . . . , xn}, where each object is described by m
attributes xi¼ (xi1, xi2, . . . , xim), determine a
classification that is most likely to have gener-
ated the observed objects.

Many different fields of study, such as
engineering, zoology, medicine, linguistics,
anthropology, psychology, andmarketing, have
contributed to the development of clustering
techniques and their applications. For example,
cluster analysis can be used to find two similar
groups for the experiment and control groups in
a study. In this way, if statistical differences are
found in the groups, they can be attributed to
the experiment and not to any initial difference
between the groups.

The identifications of similar profiles are
achieved through the comparison of the row or
column vectors by means of a distance function
d. The distance function is a particular form of a
metric function.

A metric d is a function satisfying:

1. non-negativity: d(a; b) 6¼ 0;
2. symmetry: d(a; b)¼d(b; a);
3. d(a; a)¼ 0;
4. definiteness: d(a; b)¼ 0 if and only if a¼ b;
5. triangle inequality: d(a; b)�d(b; c)_d(a; c).

A function only satisfying 1–3 is called a
distance.

Among the most used distance functions, we
can find Euclidean distance and the Pearson

Lymphocytes Gene Expression: I Theoretical 1139



correlation distance. If we define two vectors x
and y, as:

x ¼ ðx1; . . . ; xnÞ; y ¼ ðy1; . . . ; ynÞ

then Euclidean distance can be defined as
follows:

dðx; yÞ ¼ ðSðxi � yiÞ2Þ1=2

and the Pearson’s correlation coefficient is
defined as:

drðx; yÞ ¼ ð1� rðx; yÞÞ=2

where:

rðx; yÞ ¼ ðx� xmeanÞ � ðy� ymeanÞ=sx � sy

Note that:

drðx; yÞ 2 ½0; 1�where drðx; yÞ ¼ 0

implies perfect similarity and that: drðx; yÞ ¼ 1
implies maximal dissimilarity.

The Pearson measure in comparison to the
Euclidean measure reflects more the ‘‘shape’’
rather than the ‘‘distance’’ of the vectors, since it
is invariant under multiplication with a con-
stant.

In cluster analysis, distance measure d,
calculated between every single pair of object,
must be extended to a measure of distance
between clusters. There are several ways to do
this (see Table II).

Once the distance function and the linkage
methodshavebeen set, it is necessary to define a
strategy to build clusters. There are several
methods to performclustering analysis.Wenow
will only consider two of the most important
ones: hierarchical clustering and k-means clus-
tering.

The hierarchical clustering algorithm either
iteratively joins the two closest clusters starting
from single clusters (bottom-up approach) or
iteratively partitions clusters starting from the
complete set (top-down approach) [Shannon
et al., 2003]. After each step a new distance
matrix between the newly formed clusters and
the other clusters is recalculated.

Given a set of objects D, the algorithm can be
summarized as follows:

1. Find a minimal entry d(i, j) in D and merge
clusters i and j.

2. Compute D0 from D by deleting row i and
column j and adding a new row and column
i[ j with the new entries being d(k, i[ j).

3. Repeat steps 1 and 2 until D0 consists only of
one entry.

The d(k, i[ j) are of course dependent on the
choice of the method. For:

* Single Linkage: d(k, i[ j)¼min(d(k, i),
d(j, k))

* Complete Linkage: d(k, i[ j)¼max(d(k, i),
d(j, k))

* Average Linkage: d(k, i[ j)¼ (ni �d(k, i)þ
nj �d(j, k)/(niþnj)

* Centroid Linkage: d(k,i[ j)¼ni �d(k,i)/
(niþnj)þnj �d(k, j)/(niþnj)�ni �nj �d(i, j)/
(niþnj)2.

The resultant hierarchical clustering can
be easily visualized using dendrograms, which
represent all objects as leaves of a large, branch-
ing tree. Theappropriate number of clusters can
be obtained by cutting the dendrogram at a
certain level to obtain the desired number of
clusters.

There is no standard criterion or algorithm
for choosing a cut-off point for a dendrograms,
it is often set by the user considering the
conditions and the goals of every single experi-
ments.

K-means clustering uses a different approach
[Tsai et al., 2005]. In k-means clustering, initial
cluster centroids are selected, and the proximi-
ties (similarity or distance) from each object to
all k centroids are calculated. Each object is
then assigned to the cluster to which it is the
closest. The k new centroids are formed with
new cluster members and the objects are reallo-
cated to one of the new k clusters. This iterative
process stops if there is no reallocation of objects

TABLE II. Different Ways of Linkage in Cluster Analysis

Single linkage The distance between two clusters is the minimal distance between two objects, one from each cluster
Average linkage The distance between two clusters is the average of the pairwise distance between members of the two clusters
Complete linkage The distance between two clusters is the maximum of the distances between two objects, one from each cluster
Centroid linkage The distance between two clusters is the distance between their centroids. A centroid is the average point in the

multidimensional space defined by the dimensions. Some time it is also stated as the center of gravity for the
respective cluster.
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or if the reassignment satisfies the criteria set
by the user.
The aimof k-means clustering is to partition a

set of clusters and to find the means mi of each
cluster. The first step is to choose a dissimilarity
measure d.
Algorithm:

1. Randomly pick m1, . . . , mk, where m are the
means of the cluster Ci..

2. For each x2E compute mini d(mi,x).
3. Recompute new mean of clustering Ci:

mi¼ 1/[Ci] Sx where x2Ci.
4. Repeat steps 2 and 3 until ‘‘convergence’’.

K-means clustering is a useful method if the
user has an a priori idea about the number of
clusters in which genes have to be divided.

Interactions between genes involved in
human T lymphocyte cell cycle were evaluated

Fig. 1. a: Relations between the genes involved in human T lymphocyte cell cycle according to co-
mentioning in paper abstracts. b: Relations between the genes involved in human T lymphocyte cell cycle
according to gene–gene interaction (induction or suppression). c: Relations between the genes involved in
human T lymphocyte cell cycle according to protein–protein interactions for proteins encoded by the
corresponding gene.
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using the program STRING (Figs. 1 and 2)
(Search Tool for the Retrieval of Interacting
Genes, Heidelberg, Germany) [von Mering
et al., 2005].

The interactions among genes are summar-
ized for each gene according to its successive
number in the list we created (Fig. 3).

RESULTS

A total of 256 genes appear involved in the cell
cycle of human T cells as shown in the methods.

Interactionsbetweengenes involved inhuman
T lymphocyte cell cyclewere evaluated using the
programSTRING (seeFigs. 1 and 2) [vonMering
et al., 2005]. The interactions among genes are
summarized for each gene according to its
successive number in the list we created (Fig. 3).

In order to identify the most important genes
among the 256 we found, we decided to apply
cluster algorithms on the weighted numbers. In
particular, we wanted to determine a subset of
‘‘leader’’ genes, the oneswith thehighestwithed
number of links, which can be considered the
most significant genes in human T lymphocytes

cell cycle (Fig. 3). Other genes are thus depen-
dent on these leader ones.

We used two different algorithms, hierarch-
ical and k-means clustering (see Methods). In
this way, we gave as an input the list of genes
with their ownweighted number of links. Genes
are then grouped, according to the algorithm, in
different subsets, on the base of the weighted
number of links. First of all, we used K-means
clustering. We started with two clusters and
then increase their number, with amaximum of
500 cycles for every experiment. The cluster
with the highest rank of weighted number of
links is defined the leader cluster. By increasing
the number of clusters, the number of genes
belonging to the leader cluster is supposed to
become lower and lower, until it becomes stable.
Genes belonging to the leader cluster at this
point are the leader genes (Fig. 4 and Table IV).
It follows that there are only six genes in the
leader cluster. In order to validate our data,
we performed the Kruskal–Wallis test on the
results of different experiments, to see if there is
statistical significant difference among differ-
ent clusters. The Kruskal–Wallis test is a more

Fig. 1. (Continued )
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general form of the ANOVA test, which does not
require a Gaussian distribution of data. This
test proved that different clusters medians
always varied significantly (P< 0.05, data not
shown).
Then, we applied to the whole set of data

another algorithm, hierarchical clustering. We
used different methods to compute linkage; we
setan increasing cutoff to themaximumnumber
of cluster to be calculated. The leader cluster
contained the same six genes (Table IV) as the
K-means calculated one, using the smallest
distance linkage (2 clusters) and both the

centroid and the complete linkage (3, 4, and
5 clusters each) (see Table III). Even for
these experiments the Kruskal–Wallis test
gave statistical significance (P< 0.05, data not
shown).

Thus, it’s possible to affirm that the six genes
with the highest number of links are the
most important gene in controlling human T
lymphocytes cell cycle (see Table IV). A wider
analysis of the interactions among leader genes,
performed with STRING, revealed also genes
important in their interactions, or neighboring
genes (Fig. 5).

Fig. 1. (Continued )
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Moreover, nearly the entire list of the genes
we created (about 90%) is involved in some
interactions, leaving only 27 unlinked genes, or
orphan genes (see Table V).

DISCUSSION

Cell cycle progression depends on a complex
network of interacting proteins and genes,

which regulate crucial activities such as DNA
synthesis, gene expression, metabolism, and
information processing. Disruptions in the
intricate balance between the components of
this network may lead to cancer, terminal dif-
ferentiation, and/or aging; however, interfering
with signals transmitted by bioregulatory net-
works is an important tool for the control of cell
growth and of cancer therapy. In recent years,

Fig. 2. a: Relations between the genes induced during lymphocyte activation according to co-mentioning
in paper abstracts.b: Relations between the genes inducedduring lymphocyte activation according to gene–
gene interaction (inductionor suppression). c: Relations between the genes involved in humanT lymphocyte
cell cycle according to protein–protein interactions for proteins encoded by the corresponding gene.
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knowledge about interacting molecules that
regulate cell growth has increased exponen-
tially, but our ability to make sense of this
detailed information has not. Researchers
interested in using modern biology need tools
to organize a large collection of facts, including
descriptions of bioregulatory molecules, their
enzymatic modifications, and the complexes
they form. Recently a common language was
introduced that allows scientists to integrate

data in a clear standardized, and computer-
readable format, asMolecular InteractionMaps
(MIMs) [Aladjem et al., 2004].

In the present work, we did not follow the
MIMs method [Aladjem et al., 2004], since the
latter is more suitable for a small set of genes/
proteins than for a large map, like the one we
constructed. Besides, theMolecular Interaction
Maps method is dedicated to protein–protein
interactions and analyzes different types of
protein interactions in terms of a sophisticated
set of descriptors. This study, instead, uses
protein–protein interactions between proteins
encoded by the studied genes together with
other interactions between the genes, with
scores assigned according to the ideology of
STRING software and database, and utilizes
fact that this scoring was assigned to each
interaction type according to well-validated
benchmarking systems (von Mering et al.,
2005 and refs therein). It could be of interest to
evaluate the contribution of each component of
our interaction scores and see the emerging
clustering patterns in view of relationships
between the three interaction types. However,
this would involve reconsidering the basics of
the method and is therefore outside the scope
of this paper but merits a separate study.

With the method described here, we succeed
in the precise identification of ‘‘leader genes’’

Fig. 2. (Continued )
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Fig. 3. Weighted number of links for the genes involved in cell cycle control of human T lymphocytes.
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(Fig. 4 and Table III), which appear to control
cell cycle progression (Table IV).

Such a small set of genes is composed of only
six members, which have the highest number of
interactions with other genes in the human T
lymphocytes cell cycle process. Since their very
high number of interactions, they are supposed
to play a central role in the control of the cell
cycle in human T lympocytes.

Moreover, our objective approach, based on
weighed number of links and their clustering in
order to identify leader genes, can give an added
value to the methods described in Aladjem et al.
[2004], giving a qualitative but also quantitative
description of the relationships between genes.

A bibliographic research on cell cycle con-
firmed our results. Every genewe identified as a
leader gene is known as a fundamental gene
in the cell cycle control at important points

(Table IV), namely the most important four
at the transition from G0 to G1 phase (MYC)
[Oster et al., 2002], at the progression in G1
phase (CDK4) [Modiano et al., 2000], and at the
transitions from G1 to S (CDK2) [Baluchamy
et al., 2003], and from G2 to M phases (CDC2)
[Kawabe et al., 2002; Torgler et al., 2004].The
two remaining ‘‘leader genes’’ (CDKN1A and
CDKN1B) are inhibitors of cyclin-CDK2 or
-CDK4 complexes and thereby contribute to
the control of G1/S transition and of G1
progression [Jerry et al., 2002; Chang et al.,
2004].

It appears also clearly that leader genes
(Fig. 4) are strictly connected, directly or thro-
ugh other interactions (Fig. 5). The identifica-
tion of leader genes (Fig. 4 and Table IV) is
indeed accompanied by the identification of
neighboring genes, which can give a deeper
insight on the leader genes role and their
interactions, providing useful information. For
example, the identification of orphan genes can
suggest new targeted experimental researches
in order to identify their partners (Table V).

Prediction of leader genes was found compa-
tible with both our original experimental data
obtained using commercially available DNA
microarrays such as Human Starter, as well as
with existing experimental data [Nicolini et al.,
2005].

We found 27 unlinked genes (see Table V).
Checking their Gene Ontology links revealed
that six of them are involved in transcription

Leader Genes
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Fig. 4. Genebelonging to the leader cluster in different K-means clustering experiments,with an increasing
number of cluster.

TABLE III. Gene Belonging to the Leader
Cluster in Different Hierarchical Clustering

Experiments

Linkage
Number of genes in the

leader cluster

2 clusters Centroid 35
Average 35
Smallest 6

3 clusters Centroid 6
4 clusters Centroid 6
5 clusters Centroid 6

Average 6

The six genes appearing in this table always compose the same
subset (Table IVa).
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activation thereby possessing DNA binding
properties while four are the key genes in cell
cycle, while one (CHAF1B), the gene encoding
subunit B of chromatin assembly factor 1, also
known as p60, is both a DNA-binding and a cell
cycle driving protein. One other gene known to
be a cell-cycle switcher (G0S2), is also unlinked,
suggesting that particular attention should be
paid to experimentally derived correlations
involving those genes, as well as the remaining
genes.

The method we developed is based on a
mathematical evaluation of the importance of
genes in cell cycle. The role of the leader genes
we identified in the cell cycle control was
already well known, but the method we devel-
oped can give amore objective understanding of
their importance among the several other genes
involved in the same process. Leader genes
approach can be useful in many cases. First of
all, since their central role in cell cycle regula-
tion, they can become promising pharmaceuti-
cal targets. It is possible to design appropriate
drugs able to interact with leader genes, or to
their neighbor, thus controlling cell cycle pro-
gression in a cascade process. This can be very
useful in the therapy of several kinds of tumors.
Moreover, the objective identification of leader
genes and of gene interaction maps can suggest
a more rational approach to experimental
techniques and methods, as DNA microarrays
have emerged to be a very powerful tool for gene

expression analysis not only for the study of
cell cycle [Butte, 2002; Nicolini et al., 2002;
Nicolini et al., 2005]. Anyway, microarrays
often display a very large number of genes,
usually several thousand. This approach allows
the study of a whole genome with a few
experiments, but it also raise complication in
experimental analysis, since the researcher has
to confront with an enormous size of data. The
application of bioinformatics studies and the
identification of leader genes can predict which
are the most important genes in a particular
cellular process. In thisway, it becomes possible
to design smaller microarrays, which display
only the interesting genes and thus are much
easier to interpret. Protein microarrays are
also used for the study of protein–protein and
protein–gene interactions [Ramachandran
et al., 2004]. Like the DNA microarrays, the
leader gene approach can simplify their analy-
sis, by reducing the protein displayed to the
most important ones to be subsequently tested
by mass-spectrometry or by ad hoc experimen-
tation.

In conclusion, an approach based on bioinfor-
matic and statistical analysis of already exist-
ing databases can really give an added value
to the identification and the design of new
pharmaceutical targets or to experimentation
planning. Biology is becoming more and more
an exact science, which cannot ignore the
contribution of informatics and statistics in

Fig. 5. Interaction map among leader genes and their neighborhood.
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the preliminary phases of experimentation and
in proper analysis of results.
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